МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего профессионального образования

«Московский физико-технический институт (государственный университет)» МФТИ

			«УТВЕРЖДАЮ	>>
Проректор по	уче	бной	и методической работ	e
			Д.А. Зубцо	В
	«	>>	20 I	٦.

РАБОЧАЯ ПРОГРАММА

по дисциплине: Введение в физику высоких энергий **по направлению:** 03.03.01 Прикладные математика и физика

профиль подготовки: «Физика микромира»

факультет: ОПФ

кафедра: Физика высоких энергий

курс: 3 (бакалавриат)

семестр: 5 диф.зачет : 5 семестр

Трудоёмкость в зач. ед.: вариативная – 2 зач. ед.

в т.ч.:

лекции: 30 ч;

практические (семинарские) занятия: нет;

лабораторные занятия: нет;

мастер классы, индивид. и групповые консультации: нет;

самостоятельная работа: 15 часов;

курсовые работы: нет;

подготовка и сдача экзаменов: нет.

ВСЕГО ЧАСОВ 45

Программу составил д.ф.м.н. проф. А.М.Зайцев Программа обсуждена на заседании кафедры Физики высоких энергий ФОПФ МФТИ "13" июля 2015 г. СОГЛАСОВАНО:

Заведующий кафедрой

Зайцев А.М.

Лекан

М.Р. Трунин

Начальник учебного управления

Аннотация

Основная задача этого курса – дать представление о свойствах элементарных частиц, теоретических и экспериментальных методах исследования фундаментальных взаимодействий. Этот курс является подготовительным для студентов, специализирующихся в физике высоких энергий. Он может быть полезен студентам других специальностей для ознакомления с одним из бурно развивающихся направлений современной физики.

Лекция 1. Что и как изучает физика высоких энергий.

Массы частиц. Размеры частиц. Естественные единицы. Виды фундаментальных взаимодействий. Сечение. Светимость. Типичные эксперименты.

Кинематика реакций.

Пороги реакций. Бинарные реакции. Преобразования распределений. Двухчастичные распады. Трехчастичные распады. Инклюзивные и эксклюзивные реакции.

Лекция 2. Теория рассеяния.

Выражение амплитуды рассеяния через фазы. Оптическая теорема. Формула Брейта-Вигнера. Дифракционное рассеяние. Барионные и мезонные резонансы.

Лекция 3. Изотопическая симметрия

Адроны. SU(2)-симметрия. Коэффициенты Клебша. SU(2)-симметрия в сильных и слабых взаимодействиях. Нарушение SU(2)-симметрии.

Лекция 4. Рассеяние электронов на нуклонах и ядрах.

Вывод формулы Резерфорда. Формфактор. Формулы Мёллера и Розенблата. Формфакторы нуклонов.

Лекция 5. Жесткие процессы (1).

е+е- → адроны. Полное сечение. Струи. Цвет.

Лекция 6. Систематика адронов.

Кварковая модель, $SU(3)_f$ -симметрия, цвет.

Мезоны, барионы, тяжелый кварконий.

Лекция 7. Жесткие процессы(2).

Глубоко-неупругое взаимодействие. Кинематика. Скейлинг. Партонная модель.

Лекция 8. Дискретные симметрии

Р, С, Т -симметрии. Тождественность частиц. Связь спина и статистики

Лекция 9. Уравнение Дирака.

Волновая функция частиц со спином ½. Частицы и античастицы.

Лекция 10. Слабые взаимодействия.

Распады лептонов. Нарушение Р-четности. Взаимодействие ток*ток. Фермиевская константа. Распады адронов. Универсальность слабого взаимодействия.

Лекция 11. Смешивание кварков.

Матрица смешивания кварков. Нарушение СР-четности. Эксперименты по исследованию распадов тяжелых кварков.

Лекция 12. Нейтрино

Массы нейтрино. Дираковские и майорановские нейтрино. Взаимодействие нейтрино с веществом. Осцилляции.

Лекция 13. Промежуточные бозоны.

Рождение промежуточных бозонов в адронных взаимодействиях. Рождение Z-бозонов в е+е- взаимодействиях. Массы, ширины, вероятности распадов.

Лекция 14. Сведения о стандартной модели

Проблемы модели Ферми. Калибровочные теории. Хиггсовская модель. Свойства хиггсовского бозона.

Литература:

- 1. Д. Перкинс. Введение в физику высоких энергий. Энергоатомиздат, 1991
- 2. Ф.Клоуз. Кварки и партоны. М.: Мир, 1988
- 3. Ф.Хелзен, А.Мартин. Кварки и лептоны. Москва, Мир, 1987.
- 4. Л.Б.Окунь, Лептоны и кварки, Наука, М., 1981
- 5. Л.Б.Окунь. Физика элементарных частиц. М.: Наука, 1988