СВОЙСТВА НЕЙТРАЛЬНЫХ ОЧАРОВАННЫХ МЕЗОНОВ В *рА*-ВЗАИМОДЕЙСТВИЯХ ПРИ 70 ГэВ

© 2011 г. В. Н. Рядовиков* (от имени Сотрудничества СВД-2)¹⁾

Институт физики высоких энергий, Протвино, Россия Поступила в редакцию 28.05.2010 г.

Приведены результаты обработки данных эксперимента SERP-E-184 "Изучение механизмов образования очарованных частиц в *pA*-взаимодействиях при 70 ГэВ и их распадов", полученные при облучении активной мишени установки СВД-2, состоящей из пластинок углерода, кремния и свинца, пучком протонов с энергией 70 ГэВ. После выделения сигнала от двухчастичного распада нейтральных очарованных мезонов и оценки сечения образования чарма при околопороговой энергии ($\sigma(c\bar{c}) = 7.1 \pm 2.4$ (стат.) ± 1.4 (сист.) мкбн/нуклон) исследованы некоторые свойства D^0 и \bar{D}^0 : зависимость сечения от атомного веса ядра мишени (*A*-зависимость), поведение дифференциальных сечений $d\sigma/dp_t^2$ и $d\sigma/dx_F$, зависимость параметра α от кинематических переменных x_F , p_t^2 и $p_{лa6}$. Экспериментальные результаты сравниваются с предсказаниями, полученными с помощью программы FRITIOF7.02.

ВВЕДЕНИЕ

Эксперимент SERP-E-184 "Изучение механизмов образования очарованных частиц в pAвзаимодействиях при 70 ГэВ и их распадов" [1] выполняется на установке СВД-2 (ИФВЭ, Протвино). Активная мишень, состоящая из пластинок углерода, кремния и свинца, облучается пучком протонов с энергией 70 ГэВ. В работе [2] после выделения сигнала в спектре эффективных масс системы $K\pi$ дана оценка сечения образования очарованных мезонов в pA-взаимодействиях при околопороговой энергии. Сечение образования чарма составило

 $\sigma(c\bar{c}) = 7.1 \pm 2.4$ (стат.) \pm

 ± 1.4 (сист.) мкбн/нуклон.

Полученная величина сечения превышает предсказания теории жесткой КХД [1] ($\sigma(c\bar{c}) \sim 1$ мкбн). Вместе с тем, в пределах возможного изменения параметров модели меняется поле ошибок [3], и это сечение не кажется чересчур большим (рис. 1а, взят из работы [4], добавлена наша точка). Попытки оценки сечения образования чарма при околопороговой энергии предпринимались более 20 лет назад на установке БИС-2 ИФВЭ при облучении углеродной мишени нейтронами с энергией 40-70 ГэВ [5]. В кинематической области $x_{\rm F} > 0.5$ измеренное сечение образования D⁰-мезонов оказалось значительно больше теоретических предсказаний, а именно $\sigma(D^0) = 28 \pm 14$ мкбн/ядро. В пересчете на всю кинематическую область сечение образования чарма составило ~5 мкбн/нуклон. Примерно такая же теоретическая оценка этой величины получена группой Кайдалова при вычислении сечения образования чарма в модели кваркглюонных струн [6]. На рис. 1б представлен график из работы [6] с добавлением нашей точки.

Подробное описание установки СВД-2 можно найти в работе [1]. Наличие в эксперименте Е-184 мишени, содержащей пластинки углерода, кремния и свинца, позволяет измерить зависимость сечения образования чарма от атомного веса ядер мишени. В работе [2] было показано, что параметр α в *А*зависимости ($\sigma \sim A^{\alpha}$) в этом эксперименте равен 1.08 ± 0.12, что согласуется с результатами других экспериментов [7–9].

^{*}E-mail: riadovikov@ihep.ru

¹⁾ А. Н. Алеев, Е. Н. Ардашев, А. Г. Афонин, В. П. Баландин, С. Г. Басиладзе, С. Ф. Бережнев, Г. А. Богданова, М. Ю. Боголюбский, А. М. Вишневская, В. Ю. Волков, А. П. Воробьев, А. Г. Воронин, Г. Г. Ермаков, П. Ф. Ермолов, С. Н. Головня, С. А. Горохов, В. Ф. Головкин, Н. И. Гришин, Я. В. Гришкевич, В. Н. Запольский, Е. Г. Зверев, С. А. Зоткин, Д. С. Зоткин, Д. Е. Карманов, В. И. Киреев, А. А. Киряков, В. Н. Крамаренко, А. В. Кубаровский, Н. А. Кузьмин, Л. Л. Курчанинов, Г. И. Ланщиков, А. К. Лефлат, С. И. Лютов, М. М. Меркин, Г. Я. Митрофанов, В. С. Петров, Ю. П. Петухов, А. В. Плескач, В. В. Попов, В. М. Роньжин, Д. В. Саврина, В. А. Сенько, М. М. Солдатов, Л. А. Тихонова, Н. Ф. Фурманец, А. Г. Холоденко, Ю. П. Цюпа, Н. А. Шаланда, А. И. Юкаев, В. И. Якимчук.

Рис. 1. Экспериментальные сечения образования чарма в *pA*-взаимодействиях и теоретические предсказания: *a* – пертурбативная КХД [3], *б* – модель кварк-глюонных струн [6].

Выполненное детальное моделирование процессов регистрации распадов очарованных частиц на установке СВД-2 с помощью программ FRITIOF7.02 и GEANT3.21 позволяет определить эффективности всех процедур системы обработки данных и их зависимость от кинематических параметров p_t^2 и x_F , что, в свою очередь, дает возможность оценить инклюзивные спектры для нейтральных *D*-мезонов. Далее в тексте обозначение D^0 используется для суммы "частица + античастица".

ВРЕМЯ ЖИЗНИ НЕЙТРАЛЬНЫХ *D*-ME3OHOB

Для проверки того, что выделенные распады $K\pi$ являются распадами очарованных мезонов, измерялось время их жизни из зависимости сечения реакции $pA \rightarrow D^0 + X$ от длины пробега $K\pi$ системы. Видимая длина пробега поправлялась на фактор (p/M), т.е. $L = L_{\text{вид}}/(p/M)$, где p – импульс и М – измеренная масса системы. Диапазон длин пробега делился на интервалы (см. рис. 2), в каждом интервале строился спектр эффективных масс системы $K\pi$ и определялось сечение по количеству событий в сигнале от распада D^0 мезона. Из-за небольшой статистики сигналы от D^0 - и \bar{D}^0 -мезонов объединялись в один спектр. Описание зависимости сечения от длины пробега (рис. 2) функцией $\sigma \sim \exp(-L/c\tau)$ дает значение $c\tau = 0.123 \pm 0.024$ мм, что совпадает с табличной величиной 0.124 мм в пределах ошибки.

ДИФФЕРЕНЦИАЛЬНОЕ СЕЧЕНИЕ $d\sigma/dp_t^2$

Аксептанс установки СВД-2 позволяет измерять поперечный импульс (p_t) и переменную Фейнмана $(x_{\rm F} = 2p_L/\sqrt{s})$ очарованных мезонов в широкой области: p_t^2 от 0 до 4 $(\Gamma_{\rm PB}/c)^2$ и $x_{\rm F}$ от -0.2

Рис. 2. Зависимость сечения образования нейтральных *D*-мезонов от длины их пробега. Точки — экспериментальные данные, кривая — результат параметризации экспонентой.

до 0.6. Моделирование показывает, что при этом в апертуру спектрометра попадает 54% D^0 -мезонов и 23% \overline{D}^0 -мезонов.

Для получения спектра по p_t^2 строились спектры эффективных масс системы $K\pi$ в четырех интервалах по p_t^2 . В каждом спектре определялось число событий N_{per} с распадом нейтральных D-мезонов и вычислялось инклюзивное парциальное сечение для данного интервала по p_t^2 по формуле

$$\sigma(D^0)_{\mathrm{HZ}} = K_{\mathrm{an}} \cdot N_{\mathrm{per}} \cdot A^{0.7} / (\mathrm{Br} \cdot \varepsilon \cdot L_{\mathrm{HHT}}),$$

В pA-столкновениях исследуется поведение параметра A-зависимости α от кинематических переменных. Несмотря на небольшую статистику сигнала и, вследствие этого, большие ошибки, была предпринята попытка наблюдения зависимости α от p_t^2 . На рис. 4a приведена зависимость дифференциальных сечений для четырех интервалов по p_t^2 от атомного веса ядер мишени. Видно, что наклоны прямых линий различаются для разных значений p_t^2 . Экспериментальные данные указывают на уменьшение параметра α с ростом p_t^2 по экспоненте (рис. 4δ).

Рис. 3. Дифференциальное сечение $d\sigma/dp_t^2$ образования нейтральных *D*-мезонов. Точки — экспериментальные данные, кривая — результат параметризации экспонентой.

$\left< p_t^2 \right>, (\Gamma \mathfrak{i} \mathbb{B}/c)^2$	$arepsilon_{ m per},\%$	$d\sigma$, мкбн/ядро				
		углерод	кремний	свинец	среднее по ядрам	
0.5	3.7	13 ± 13	83 ± 28	945 ± 285	218 ± 45	
1.5	3.8	26 ± 18	63 ± 24	669 ± 237	157 ± 38	
2.5	3.4	15 ± 15	30 ± 17	281 ± 162	72 ± 27	
3.5	3.5	14 ± 14	10 ± 10	91 ± 91	20 ± 14	

Таблица 1. Сечения образования D^0 -мезонов для четырех интервалов $p_t^2 (\Delta p_t^2 = 1.0 \, (\Gamma_{\vartheta} B/c)^2)$

Таблица 2. Сечения образования D^0 -мезонов для разных интервалов по x_F ($\Delta x_F = 0.2$)

$\langle x_{ m F} angle$	$arepsilon_{ m per},\%$	$d\sigma$, мкбн/ядро				
		углерод	кремний	свинец	среднее по ядрам	
-0.1	2.6	10 ± 10	13 ± 13	245 ± 173	40 ± 23	
0.1	9.4	16 ± 9	55 ± 14	541 ± 135	123 ± 21	
0.3	13.5	7 ± 5	15 ± 6	118 ± 52	39 ± 10	
0.5	12.5	2 ± 2	6 ± 4	25 ± 25	6 ± 4	

ДИФФЕРЕНЦИАЛЬНОЕ СЕЧЕНИЕ $d\sigma/dx_{\rm F}$

Исследовано поведение сечения реакции $pA \rightarrow D^0 + X$ от переменной Фейнмана $x_{\rm F}$. Способ вычисления сечений для разных интервалов по $x_{\rm F}$ проведен по аналогии со случаем исследования зависимости от поперечного импульса, т.е. с построением спектров эффективных масс системы $K\pi$ в четырех интервалах по $x_{\rm F}$ и с определением коли-

чества событий в сигнале для каждого интервала (табл. 2). На рис. 5 приведены экспериментальные значения сечений образования нейтральных очарованных мезонов в зависимости от переменной $x_{\rm F}$. Для описания зависимости использовалась стандартная параметризация вида $d\sigma/dx_{\rm F} \sim (1 - |x_{\rm F}|)^n$. Параметр n получился равным 6.8 \pm 0.8, а среднее значение $\langle x_{\rm F} \rangle = 0.12$.

Рис. 4. a — Зависимость дифференциального сечения от атомного веса ядер мишени; δ — зависимость параметра α от p_t^2 . Точки — экспериментальные данные, кривая — результат параметризации экспонентой.

Рис. 5. Дифференциальное сечение образования нейтральных *D*-мезонов $d\sigma/dx_F$. Точки — экспериментальные данные, точечная кривая — результат параметризации вида $d\sigma/dx_F \sim (1 - |x_F|)^n$.

Аналогично зависимости параметра α от p_t^2 была исследована зависимость этого параметра от переменной $x_{\rm F}$. Для этого оценивались сигналы от D^0 -мезонов и соответствующие сечения их образования в интервалах по $x_{\rm F}$ для трех материалов активной мишени (рис. 6*a*). Из рис. 6*б* видно, что значения параметра α уменьшаются с увеличением $x_{\rm F}$. Если использовать описание данных экспонентой, то при $x_{\rm F} \rightarrow 1$ параметр α уменьшается до значения 0.55. Это согласуется с теоретическим предсказанием, сделанным в [6].

Следует отметить, что в табл. 1 и 2 приведены только статистические ошибки сечений, а система-

тические неоднозначности в полученных величинах сечений мы оцениваем на уровне 20% их статистической ошибки.

FRITIOF И А-ЗАВИСИМОСТЬ СЕЧЕНИЯ

В программе моделирования адрон-адронных и адрон-ядерных взаимодействий FRITIOF реализуется Лундская струнная модель. Предполагается, что после обмена 4-импульсом адроны становятся двумя возбужденными струнными состояниями, которые далее излучают глюоны в приближении цветных диполей КХД. Конечная адронизация выполняется с использованием Лундской модели фрагментации струн. Столкновение с ядром рассматривается как независимые столкновения налетающего нуклона с конституентными нуклонами ядра. Учитываются фермиевское движение нуклонов, деформация ядра и многократное перерассеяние. Плотность распределения нуклонов в ядре описывается потенциалом Вудса-Саксона. Мы использовали эту программу для проведения модельного исследования зависимости параметра α от кинематических параметров D^0 -мезонов и сравнения полученных результатов с экспериментальными данными. Имеющиеся числа моделированных (МК) событий с D⁰-мезонами для трех значений атомного веса ядер мишени (C, Si, Pb) взвешивались таким образом, чтобы в среднем по всем событиям выполнялась А-зависимость с параметром $\alpha = 1$. Затем из трех распределений по данной кинематической переменной ($x_{\rm F}, p_t^2$ и р_{лаб}) для D⁰-мезонов вычислялась зависимость параметра α от этой величины.

Рис. 6. a — Зависимость $d\sigma/dx_F$ от атомного веса ядер мишени для четырех интервалов x_F (см. табл. 2); δ — зависимость параметра α от x_F . Точки — экспериментальные данные, кривая — результат параметризации экспонентой.

Рис. 7. a – Распределения по $x_{\rm F}$ для D-мезонов; δ – зависимость параметра α от $x_{\rm F}$. Точки – экспериментальные данные, кривые – результаты моделирования.

Рис. 8. a – Распределения по p_t^2 для D-мезонов; б – зависимость параметра α от p_t^2 . Точки – экспериментальные данные, кривые – результаты моделирования.

В работе [10] показано, что зависимость α от x_F должна отражать вклад в сечение разных ядерных подпроцессов, таких, как поглощение в конечном состоянии, взаимодействия с близко летящими адронами (interactions with comovers), затенение распределений партонов, потери энергии партонов в среде и компоненты с внутренним очарованием. Это приводит к росту или падению параметра α с увеличением $x_{\rm F}$.

На рис. 7*а* показаны исходные моделированные распределения событий в трех мишенях (C, Si, Pb) по переменной Фейнмана x_F для D^0 - и \overline{D}^0 -мезонов, из которых вычисляется параметр α .

Рис. 9. *а* – Распределения по *р*_{лаб} для *D*-мезонов; *б* – зависимость параметра *α* от *р*_{лаб}. Точки – экспериментальные данные, кривые – результаты моделирования.

График его зависимости от переменной $x_{\rm F}$ приведен на рис. 76 (сплошная и штриховая кривые). Там же приведены экспериментальные значения α для четырех интервалов по $x_{\rm F}$.

Нужно отметить, что имеются "нефизические" значения переменной $x_{\rm F}$ для МК-событий, выходящие за пределы области [-1, 1], как следствие того, что при вычислении переменной Фейнмана $x_{\rm F} = 2p_L/\sqrt{s}$ энергия в с.ц.м. \sqrt{s} оказывается заниженной, если не учитывать взаимодействие налетающего нуклона с несколькими нуклонами ядра мишени. В работе [11] было показано, что при

учете всех взаимодействующих нуклонов ядра (при моделировании программой FRITIOF это число известно) распределение по переменной $x_{\rm F}$ заключено в интервале [-1, 1], как и должно быть. К сожалению, в эксперименте число взаимодействующих нуклонов ядра неизвестно, поэтому энергия в с.ц.м. вычисляется для двух нуклонов (налетающего и мишени) и приходится использовать "нефизические" значения переменной $x_{\rm F}$ для MK-событий. При этом α уменьшается с увеличением $x_{\rm F}$ во всей области изменения $x_{\rm F}$, и эксперимент это качественно подтверждает.

Эксперимент	Энергия пучка, ГэВ	$\sigma(D^0),$ мкбн/нукл.	$\stackrel{\alpha}{(\sigma \sim A^{\alpha})}$	$(d\sigma/dx_{\rm F} \sim (1-x_{\rm F})^n)$	$\frac{b}{(d\sigma/dp_t^2\sim\exp(-bp_t^2))}$
SVD-2	70	7.1 ± 3.8	$\textbf{1.08} \pm \textbf{0.12}$	$\boldsymbol{6.8\pm0.8}$	$\boldsymbol{0.79 \pm 0.15}$
E769[7]	250	12.0 ± 3.8	0.92 ± 0.08	4.1 ± 0.6	0.95 ± 0.09
NA16[7]	360	20.4 ± 16.0	—	_	_
NA27 [7]	400	18.3 ± 2.5	—	4.9 ± 0.5	1.0 ± 0.1
E-789[8]	800	17.7 ± 4.2	1.02 ± 0.05	_	0.91 ± 0.12
E743[7]	800	22.0 ± 14.0	—	8.6 ± 2.0	0.8 ± 0.2
E653[7]	800	39.0 ± 15.0	—	11.0 ± 2.0	1.1 ± 0.2
HERA-B[9]	920	48.7 ± 10.6	0.97 ± 0.07	7.5 ± 3.2	0.84 ± 0.1

Таблица 3. Данные по образованию нейтральных *D*-мезонов и их свойствам в *p*A-взаимодействиях

На рис. 8 показаны распределения по p_t^2 для моделированных D^0 и \overline{D}^0 -мезонов (рис. 8*a*) и зависимость параметра α от p_t^2 (рис. 8*b*). При сравнении моделированных по FRITIOF зависимостей и экспериментальных точек видно, что нет даже качественного согласия между моделью и экспериментом (экспериментальные ошибки значительны из-за небольшой статистики).

На рис. 9 мы приводим аналогичные распределения по $p_{\rm ла6}$ нейтральных D-мезонов. В этом случае нет проблемы представления данных, как в случае с переменной Фейнмана $x_{\rm F}$, когда неизвестно число взаимодействующих нуклонов ядра. (Такая же зависимость параметра α приводится в работе [12].) Здесь мы видим качественное согласие эксперимента и модели, т.е. α уменьшается с увеличением $p_{\rm ла6}$ нейтральных D-мезонов.

ЗАКЛЮЧЕНИЕ

В заключение приведем табл. 3, где представлены результаты некоторых экспериментов по исследованию образования чарма в pA-взаимодействиях. Видно, что наши результаты в пределах ошибок не противоречат этим данным. Однако необходимы дальнейшие исследования по уточнению свойств очарованных частиц, образующихся в pA-взаимодействиях при околопороговой энергии.

При сравнении поведения параметра A-зависимости сечения α от кинематических переменных для смоделированных по FRITIOF событий и эксперимента наблюдается качественное согласие для случая переменной Фейнмана $x_{\rm F}$ и $p_{\rm лаб}$ нейтральных D-мезонов. В случае переменной p_t^2 наблюдается значительное различие: в модели α прак-

тически не зависит от p_t^2 , в то время как экспериментальные точки указывают на уменьшение α с ростом p_t^2 .

Работа выполнена при поддержке грантов РФФИ № 09-02-00445 и НШ-1456-2008-2.

СПИСОК ЛИТЕРАТУРЫ

- М. Ю. Боголюбский и др., Препринт № 96-98, ИФВЭ (Протвино, 1996); http://web.ihep.su/ library/pubs/prep1996/ps/96-98.pdf
- Е. Н. Ардашев и др., Препринт № 2009-9, ИФВЭ (Протвино, 2009); http://web.ihep.su/library/ pubs/prep2009/ps/2009-09.pdf
- A. Shabetai, qm2008.bnl.gov/Program/8Feb/Session XIV/qm08 shabetai.ppt
- A. D. Frawley, T. Ullrich, and R. Vogt, Phys. Rept. 462, 125 (2008).
- 5. BIS-2 Collab., Z. Phys. C 37, 243 (1988).
- А. Б. Кайдалов, О. И. Пискунова, ЯФ 43, 1545 (1986).
- 7. J. A. Appel, in Proceedings of X International Conference on Physics in Collision, Durham, North California, Jun. 21–23, 1990.
- M. Daniel Kaplan, http://arxiv.org/PS_cache/hepex/pdf/9610/9610003v1.pdf
- 9. S. Kupper, PhD Thesis (University of Ljubljana, 2007).
- R. Vogt, http://arxiv.org/PS_cache/hep-ph/pdf/ 9907/9907317v1.pdf
- А. П. Воробьев и др., Препринт № 2008-17, ИФВЭ (Протвино, 2008); http://web.ihep.su/ library/pubs/prep2008/ps/2008-17.pdf
- M. J. Leitch, http://arxiv.org/PS_cache/nucl-ex/ pdf/9909/9909007v3.pdf

PROPERTIES OF NEUTRAL CHARMED MESONS IN pA INTERACTIONS AT 70 GeV

V. N. Ryadovikov (On behalf of the SVD-2 Collaboration)

The results of data handling for E-184 experiment are presented received with 70-GeV proton beam irradiation of active target with carbon, silicon, and lead plates. When two-prong neutral charmed meson decay signal has been obtained and charm production cross section estimated at near-threshold energy ($\sigma(c\bar{c}) = 7.1 \pm 2.4$ (stat.) ± 1.4 (syst.), μ b/nucleon), some properties of D^0 and \bar{D}^0 were studied, in particular: *A* dependence of cross section, kinematical distributions $d\sigma/dp_t^2$ and $d\sigma/dx_F$, the dependence of α parameter versus x_F , p_t^2 , and p_{lab} . Experimental results are compared to the predictions of FRITIOF7.02 program.